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ABSTRACT 

The capturing operation, a kind of reverse orbit closure, is defined. In 
terms of this operation generalized proximal relations P~(X) for a min- 
imal flow (X, T) are defined. The distal order of (X,T) is then defined 
to be the least ordinal number ~/ for which the distal structure relation 
Sd(X) = P~(X). It is shown that the distal order of a minimal flow is 
either finite or w, the first infinite ordinal. Examples are given which 
show that minimal flows of any allowable distal order actually occur. An 
analogous theory is developed for the equicontinuous relation Sea(X). 

§0. Introduction 

In  th is  pape r ,  we o b t a i n  c h a r a c t e r i z a t i o n s  of  t h e  d i s ta l  and  e q u i c o n t i n u o u s  s t ruc-  

t u re  r e l a t ions  in m i n i m a l  flows. T h e s e  arise by m e a n s  of  i t e r a t i v e  processes ,  

s t a r t i n g  w i t h  t h e  p r o x i m a l  and  r eg iona l ly  p r o x i m a l  re la t ions ,  respec t ive ly .  To ev- 

e ry  m i n i m a l  flow, we can  ass ign o rd ina l  n u m b e r s ,  t he  d i s ta l  a n d  e q u i c o n t i n u o u s  

o rders  o f  the  flow. I t  is shown t h a t  t he  d i s t a l  o rde r  of  a m i n i m a l  flow is e i the r  

f in i te  or  w, where  w is t h e  first  inf ini te  ord ina l .  A n  i m p o r t a n t  e l e m e n t  of  these  
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constructions is the capturing operation, which is a kind of reverse orbit closure. 

We show that  the distal structure and equicontinuous structure relations are the 

smallest closed capturing sets containing, respectively, the proximal and region- 

ally proximal relations. In the final section of the paper, we present examples 

which show that  minimal flows of any allowable distal order actually occur. 

We now review some basic dynamical notions and establish our notations. A 

flow (X, T) is a (right) topological action (x, t) ~ x t  of a topological group T on a 

compact Hausdorff space X. The flow (X, T) is minimal if x T  = X for all x E X. 

If (X, T) and (Y, T) are flows, a homomorphism is a continuous equivariant map  lr 

from X onto Y (thus 7r(xt) = ~r(x)t for x E X,  t • T). In this case Y is said to be a 

factor of X,  and X an extension of Y. The relation R~ = {(x, x ' ) :  7r(x) = 7r(x')} 

is a closed T invariant equivalence relation. Conversely, every closed T invariant 

equivalence relation R defines a factor flow Y -- X / R  and a homomorphism 

7r: (X, T) --+ (]I, T) such that  R -- R~. 

We will make extensive use of the Galois theory of minimal flows, as developed 

by Ellis. Let (M, T) be the universal minimal flow. This is the (unique) minimal 

flow of which every minimal flow with acting group T is a factor. Let G be the 

automorphism group of (M, T). Then G has a compact, T1 topology, for which 

multiplication is separately continuous, and for which inversion is continuous. 

This topology is in general not Hausdorff, nor is multiplication jointly continuous. 

The topology of G can be described in terms of graphs. For ~ • G, the graph 

of ~ is the set gr(~)  = { (m,~(m))  : m  • M}. T h e a u t o m o r p h i s m ¢  E G i s i n  

the closure of the subset ¢ of G iff g r (¢)  C closure{(m, ¢(m)) : ¢ • ~}, where 

the latter closure is taken with respect to the product topology in M x M. In 

terms of nets: let {~j} be a net in G, then ~j -~ ~ if there is a net {mj} in M 

with mj  -~ m such that  qoj(mj) --+ qo(m). 

To every minimal flow (X, T) one can associate a closed subgroup G(X) of G 

(the " Ellis" group of (X, T)) as follows. Let zr: M --+ X be a homomorphism, 

and let G(X) = {~ E G : ~rqo = 7r}. (A different homomorphism gives rise to a 

conjugate subgroup.) Two minimal flows have the same Ellis group if and only 

if they are " proximally equivalent" - -  that  is, they have a common proximal 

extension. For further details, see [A] and [E]. 

If  (X, T) is a flow, then x and y in X are said to be proximal if for any a • b/ 

(the unique uniform structure of the compact space X)  there is a t • T such that  

(xt, yt) • a. We denote the proximal relation by P.  The flow (X, T) is said to be 

distal if P = A, where A = {(x, x) : x • X )  is the "diagonal" in X x X (there 

are no non-trivial proximal pairs). 
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The flow (X, T) is called equicontinuous if the collection of self maps of X 

defined by T is an equicontinuous family: that is, if for every o~ E /4 there is a 

/3 E/.4 such that  if (x, x') E /~ then (xt, xtt) E a for all t E T (" 13T C a") .  

Equicontinuity can be characterized in terms of regional proximality. The 

points x and y are called regionally proximal if for any a E/4 there are x' and yt 

with (x, xt) E a (y, y') E a and t E T such that (x't, y't) E a. 
We denote the regionally proximal relation by Q. Clearly P c Q. It is easy to 

see that a flow is equicontinuous if and only if Q = A. 

Every flow (X, T) has a maximal distal and a maximal equicontinuous factor, 

(Xd, T) and (X~q, T) respectively. That  is, (Xd, T) is distal, and every distal 

factor of (X, T) is a factor of (Xd, T). (X~q, T) has the corresponding property 

for equicontinuous factors. Thus there are closed T invariant equivalence relations 

Sd and Seq such that  X/Sd = Xd and X/S~q = Xeq. Since an equicontinuous 

flow is distal, we have Sd(X) C S~q(X). 
It is immediate that P C Sd and Q c Seq. However, in general neither P nor 

Q is an equivalence relation. Even if P is an equivalence relation, it need not 

be closed. (Q is always closed, and in many important cases is an equivalence 

relation in minimal flows.) 

The following classical theorem of Ellis and Gottschalk [EG] characterizes Sd 
and Seq in terms of P and Q. 

THEOREM: Let (X, T) be a now. Then Sd is the smallest closed T invariant 
equivalence relation containing P and Sea is the smallest closed T invariant 

equivalence relation containing Q. 

ACKNOWLEDGEMENT: We began our work on this paper during the special year 

in ergodic theory at the Institute for Advanced Studies of The Hebrew University 

in Jerusalem, 1996-7. We would like to thank the Institute for its support. 

§1. The capturing operation 

Let (X, T) be a flow. We define an operation on subsets of X, the "capturing" 

operation. If K C X, the capturing set of K, C(K) = {x E X : xT N K ~ 0}. 

We say that K has the capturing property or is a capturing set if C(K) = K. 

The following proposition lists elementary properties of the capturing operation 

and capturing sets. 

PROPOSITION 1.1: Let (X ,T)  be a t~ow. 

(i) C is an idempotent operation. That is, for any K C X, C(C(K)) = C(K). 
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(ii) The union and intersection of a family of capturing sets is capturing. 

(iii) I l K  C X ,  and t E T, K t  c C(K) .  (Hence a capturing set is T invariant.) 

(iv) I f ~  is an automorphism of (X, T) and K c X then ~o(c(g))  = C(~o(K)). 

(v) For any subset K of X ,  there is a smallest closed capturing set K* con- 

taining K .  

(vi) Suppose K is a closed invariant subset of X .  Then y E C(K)  if  and only 

i f  y is proximal to some point of  K .  

(vii) Let (Y, T) be a flow, let 7r: X ~ Y be a homomorphism, and let L C Y. 

Then C(Tr-I(L)) = 7r-I(C(L)).  (Hence i l L  is capturing, so is 7r-l(L).) 

(viii) Let K be a closed invariant set and let z E C(K)  be almost periodic. 

Then z E K .  

(ix) Let K be an invariant capturing set. Then K is closed if  and only if  K 

and K have the same almost periodic points. 

Proof: We omit the easy proofs of (i), (ii), (iii), (iv) and (vii). 

Let £ be the family of closed capturing sets containing K. (X E C so £ ¢ ~.) 

Clearly K* = CI{L : L E £} is the smallest closed capturing set containing K.  

To prove (vi), suppose that y is proximal to some x E K. Let I be a minimal 

right ideal in E ( X ,  T),  the enveloping semigroup of (X, T), such that  xp = yp for 

all p E I.  Since yp = xp E K ,  we have y E C(K) .  Conversely, suppose y E C(K) .  

Since K is closed invariant, there is a minimal right ideal I in E ( X ,  T) such that  

y I  c K.  Let u be an idempotent in I.  Then yu E K and yu is proximal to y. 

Let z be an almost periodic point of C(K) .  Let p E f iT such that  zp E K.  

Since z is almost periodic, there is a q E f i t  such that  z = zpq E Kq C K.  This 

proves (viii). 

Finally, suppose K is invariant, capturing, and that  K and K have the same 

almost periodic points. Let z E K.  Then if u is a minimal idempotent, zu is an 

almost periodic point in K. Hence zu E K,  and z E C(K)  = K,  which proves 

(ix). I 

Our main interest in the capturing operation is as it is applied to the product 

flow (X x X, T). (T acts on the product by acting on each coordinate: (x, x')t  = 

(xt, x't).) Note that C(A) is just P,  the proximal relation. 

LEMMA 1.2: Let ( X ,  T) be a flow and let R be a closed invariant subset of X x X .  

Then P R  C C(R) C P R P .  I f  (X, T) is minimal, then C(R)  = P R .  

Proof: Let (x,y) E P R s o  (x,x ' )  E P a n d  (x ' ,y)  E R for s o m e x '  E X. Let 

p E E ( X ,  T), the enveloping semigroup of (X, T), such that xp = x'p. Since 
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R is closed invariant, (xtp, yp) E R so (xp, yp) E R and (x,y)  E C(R). If 

(x, y) E C(R),  let I be a minimal right ideal in E ( X ,  T) such that  (xp, yp) E R 

for p E I .  If  u is an idempotent in I then (x, xu) E P and (y, yu) E P,  so 

(x, y) E P R P .  If (X, T) is minimal, there is an idempotent u E I such that  

xu = x, so (x,y)  E PR.  I 

THEOREM 1.3: Let (X, T) be a flow. Then Sd(X) and Seq(X) are capturing sets 

in (X  x X,  r ) .  

Proo~ Since P C Sd, C(Sd) C PSdP = Sd, so C(Sd) = Sd, and similarly 

C(Sea) = Sea. | 

§2. The image of the  distal  s tructure relat ion u n d e r  a h o m o m o r p h i s m  

Now we consider the distal and equicontinuous structure relations in minimal 

flows. (The interested reader can find in IV] a proof of the relative version of the 

following result.) 

THEOREM 2.1: Let (X ,T)  and (Y,T)  be minimal flows and let 7r: X -+ Y be a 

homomorphism. Then rr( Sd( X ) ) = Sd(Y) and It(Sea(X)) = Sea(Y). 

The proof of Theorem 2.1 depends on two lemmas. 

LEMMA 2.2: Let ( X , T )  and (Y,T)  be minimal flows and let 7r: X --+ Y be a 

homomorphism. Let K be a closed invariant subset of X x X .  Then 7r(C( K)  ) = 
C(rr(K)). In particular (taking g = A), 7r(P(X)) = P(Y) .  

Proof: I t ' s  easy to see that  7r(C(K)) c C(~r(K)). Let (y, y') E C(~r(K)). Then 

there is a minimal idempotent v E f i t  such that  (y, y')v E ~r(K). Let (x, x') E K 

such that  (x ,x ' )v  = (x,x ')  and lr(x,x ' )  ---- (y,y ' ) .  Let w and w' be minimal 

idempotents in f T  such that  yw = y, y'w ~ = y', wv = v, and w'v = v. (This can 

be achieved by choosing v, w, and w' in the same minimal right ideal of fiT.) 

Then 7r(xw, x'w') = (y, y'). Since (xw, x 'w')v = (xv, x'v) = (x, x') E K,  we have 

(xw, x'w') E C(K) .  I 

The next lemma concerns regular minimal flows. (X, T) regular means that  all 

almost periodic points of (X x X, T) are on graphs of flow automorphisms. That  

is, denoting the automorphism group of (X, T) by F, if (x, y) is almost periodic, 

there is a ~ E F such that  y = ~0(x). 
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LEMMA 2.3: Let (X, T)  and (Y, T)  be minimal flows with (X, T)  regular, and let 

~r: X --+ Y be a homomorphism. Let S be a dosed T and F invariant equivalence 

relation on X and let R = ~r(S). Suppose R is a capturing set. Then R is an 

equivalence relation. 

Proo~ It is immediate  tha t  R is reflexive and symmetric.  Since R is capturing,  

it is sufficient to show tha t  if (y, y'), (y', y ' )  E R with (y, y', y")  an almost 

periodic point, then (y, y")  E R. Let (x, x') ,  (z', z")  E S with 7r(x, x') = (y, y') 

and r ( z ' ,  z")  = (y', y").  Wi thou t  loss of generality, (x, x' ,  z', z")  is an almost 

periodic point. Let  ~ E F with ~(z ' )  = x'.  Since ~r(x') = ~r(z') we have ~r~ = ~r. 

Let  x"  = ~(z") .  Then  ~r(x") = ~rqo(z") = r ( z " )  = y".  Since S is F invariant, 

(x, x") E s and (y, y") = x") e R. . 

P r o o f  of  Theorem 2.1: The  proofs for the distal and equicontinuous s t ructure  

relations are word for word the same, so we just  give the proof  for the former 

case. 

Clearly R = r ( S d ( X ) )  C Sd(Y).  For the other  inclusion it suffices to  show tha t  

R is an equivalence relation, since by Lemma 2.2 it contains P ( Y ) .  Assuming 

first tha t  X is regular, we observe tha t  S = S4(X)  is F-invariant and capturing 

(Theorem 1.3). Lemma 2.2 now implies tha t  R is also capturing and we conclude 

by Lemma 2.3 tha t  R is an equivalence relation, so tha t  in this case ~r(Sd(X)) = 
&(Y). 

In the general case let X be any regular extension of X,  e.g., the regularizer 

of X or M,  the universal minimal flow. We now have the commuta t ive  diagram: 

~, / X  

Y 

By the first par t  of the proof  we now get 

7r(Sd(X)) C Sd(Y)  ---- ,~(Sd(X)) = ~r o ga(Sd(X)) = ~r(Sd(X)). I 
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§3. A c h a r a c t e r i z a t i o n  o f  t h e  d i s ta l  s t r u c t u r e  r e l a t i o n  for m i n i m a l  f lows  

In order to characterize the distal structure relation for minimal flows, we define 

a family of "proximality" relations. Let P0 = A, the diagonal, P1 = C(Po) (so 

P1 = P).  Inductively, if 7 is an ordinal number and Pi has been defined for i < V, 

define P~ = c ( U i <  ~ Pi). (Therefore P~+I = C(P~).) 

The following proposition follows easily from Proposition 1.1 and Theorem 1.3. 

PROPOSITION 3.1: Let (X,T)  be a flow. Then, for every ordinal number % 

Pv C S d and (if V > O) Pv is a capturing set. 

Let P #  (X) be the smallest closed capturing set containing A. It  follows from 

general principles that  there is an ordinal number 7 such that  Pv(X) = P#(X) .  

Since Sd(X) is capturing we have P#(X)  C Sd(X). We show that  for minimal 

flows, in fact P # ( X )  = Sd(X). For this we require a lemma. 

LEMMA 3.2: Let (X, T) be a regular minimal flow with automorphism group F. 

Let K be a reflexive, symmetric, closed capturing set in X × X. Suppose the set 

F = {a E G : gr((~) C K} is a subgroup ofF. Then K is an equivalence relation. 

Proo~ Suppose (x, y) and (y, z) are in K.  Let u be a minimal idempotent in 

fiT, and let 2 = xu, ~ = yu and 2 = zu. Then (2,~3) and ( ~ 2 )  are almost 

periodic points of K (by Proposition 1.1, K is invariant) so there are ~ and ¢ in 

F with ~7 = ~(2) and 2 = ¢(~)). Since (2, ~) E K,  ~ E F,  and similarly ¢ C F.  

Thus 2 = ¢~(2) ,  and since F is a group, ¢ ~  E F and (2, 2) C K.  Finally, since 

K is capturing, it follows that  (x, z) C K.  I 

THEOREM 3.3: Let (X, T) be a minimal flow. Then Sd(X) = P#(X) .  

Proof." By Theorem 1.3, P #  C S4(X). For the other direction we observe that  it 

is sufficient to show that  P #  is an equivalence relation. In fact, since P = C(A) 

we have P C P #  and thus, P #  being closed and invariant (Proposition 1.1.(iii)), 

if it is also an equivalence relation we have P# ~ Sd(X), as the latter is the 

smallest closed invariant equivalence relation containing P.  

We first prove this for the universal minimal flow (M, T). 

Let G be the automorphism group of (M, T). If ~ C G it follows from Propo- 

sition 1.1 that  (id × ~)(P#) is a closed capturing set. 

Let B = {~ E G : (id × ~)(A) n P #  ~ 0}. We show that  B is a group. Note 

that  B consists of those ~ E G whose graphs meet P #  (equivalently, those ~ E G 
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whose graphs are contained in P#) .  Since P #  is symmetric, it follows that B is 

closed under inversion. 

Let ~ • B. Since ~-1 • B, A C (id x ~ ) (P#) .  By minimality of P # ,  

we have P #  c (id × ~) (P#) ,  and similarly P# C (id × ~ - I ) ( P # ) .  Therefore 

(id x ~ ) (P# )  = P #  for all ~ • B, and it now follows easily that B is a group. It 

now follows from Lemma 3.2 that P #  is an equivalence relation in M. 

Now, suppose (X, T) is a minimal flow, and let ~r: M --+ X be a homomorphism. 

Now, by Proposition 1.1, 7r -1 (P#  (X)) is a closed capturing set in M x M contain- 

ing A(M),  so P # ( M )  C 7r- l (P#(X)  ). Then Sd(X) = ~r(Sd(M) ) = ~r(P#(M) ) C 

P # ( X ) .  Since Sd(X) is capturing, we have P # ( X )  C Sd(X), and the proof is 

completed. | 

§4. T h e  d i s ta l  o r d e r  o f  a m i n i m a l  f low 

Let (X, T) be a minimal flow. The d is ta l  o r d e r  of (X, T) (denoted 5 -- 5(X, T)) 

is defined to be the least ordinal number 7 for which the distal structure relation 

Sd(X) -~ P~(X). (~(Z, T) = 0 if and only if (X, T) is distal.) We will show that 

in fact for every minimal flow, 5(X, T) _< w where • is the first infinite ordinal. 

In the last section we will see that for every k < w there exists a minimal flow 

(X, T) with 5(X, T) -- k. 

LEMMA 4.1: Let 7r: X --~ Y be a homomorphism of minimal flows. Let (y,y') 

be an almost periodic point in P(Y) .  Then there is an almost periodic point 

(x, x') • P (X)  such that 7r(x, x') -- (y, y'). 

Proof'. Let (x0, Xto) • P (X)  such that ~r(x0, x~) = (y, y'). Let u be a minimal 

idempotent such that (y ,y ' )u  = (y,y').  Then ~r(x0, x~0)u = (y,y'), and (since 

P(X)  is closed invariant) (x0, X~o)U • P(X) .  | 

For k a positive integer, let 

Dk = {a e G: dr(a) C Pk(M)} = (a  • G: dr(a) C Pk+I(M)}. 

In particular D1 = {a E G :  dr(a) C P(M)}  = {a E G :  dr(a) C P2(M)}. Note 

that the Dk are closed subsets of G. Also, since O(Pk(M)) = Pk(M) for 0 E G, 

it follows easily that Dk is preserved under conjugation by elements of G. 

Let D be the closed subgroup of G generated by D1. 

THEOREM 4.2: Let F be a closed subgroup of G containing D 1 .  Let (X, T) be 

a flow with group F. Then (X, T) is a proximal extension of a distal flow. 
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Proof." I t  is sufficient to show tha t  P ( X )  is closed. For this, in turn,  it is 

sufficient to show tha t  P ( X )  has no non-tr ivial  a lmost  periodic points  (by (viii) 

of Proposi t ion  1.1). Let  (x ,x ' )  be an a lmost  periodic point  of P ( X )  and (if 

rr: M --> X is a homomorph i sm)  let (m, m') be an a lmost  periodic point  in P ( M )  

with ~r(m, m ' )  = (x, x ' ) .  Then  m '  = a ( m )  with a • D1 C F .  Hence r a  = It, so 

x = x  ~. | 

COROLLARY 4.3:  (i) Let (X, T) be a distal minimal flow with group A. 

D 1 c A .  

(ii) D is the group of the universal distal minimal flow. 

(iii) Dk C D, for k -- 1, 2 , . . . .  

Then 

Proof." (i) Let ~r: M --> X be a homomorph i sm,  and let x = 7r(m) where mu = m. 

If  a e O1, then ~ra(m) • P(x)  = {x}, so ~ra = ~r, and a • G(X)  = A. 

(ii) By Theorem 4.2, D is the group of a distal  min imal  flow. I f  (X, T)  is a 

distal min imal  flow with  group A, then  by (i), D1 C A, so D C A. 

(iii) If  a • Dk, g r ( a )  C Pk(M) C Sd(M),  so a E D. II 

LEMMA 4.4: (i) I r a  C D1, (id x a)(Pk) C Pk+l for k >_ 1. 

(ii) D1Dk C Dk+l (k = 1, 2 . . . .  ). 

(iii) D = U { D , k :  k = 1 , 2 , . . . }  = [ .J{Dk: k = t , 2 , . . . } .  

Proof: (i) The  proof  is by induction on k. (id x c~)(P1) = C((id x a ) ( A ) )  C 

c ( P )  = P2. 

Suppose (id x a ) P k - 1  C Pk. Then  

(id x ~)Pk = (id x c~)(C(Pk-1)) = C( ( id  x c~)(Pk-1))  c C(Pk)  = P k + l .  

(ii) Let a e D1, f i e  Dk. Then  ( i d x  a/~)(x,x) = ( i d x  a ) ( i d x  ~) (x ,x )  e 

(id x ~)(Pk) = (id x a )C(Pk-1)  = C((id x a ) ( P k - 1 ) )  C C(Pk)  = Pk+l. 

(iii) I t  follows easily f rom (ii) t ha t  D~ C Ok, and clearly [.J{Dk : k = 1, 2 , . . . }  

is a group. Since the closure of a subgroup of G is a group, 

D = U { D l k :  k = 1 , 2 , . . . }  C U t D k :  k = 1 , 2 , . . . } ,  

which is a subset  of D. 1 

Our  next  result is an a l ternate  character izat ion of the distal  s t ructure  relat ion 

for a min imal  flow. Let R be a symmet r i c  and reflexive relation, and let £ ( R )  be 

the equivalence relat ion generated by R. Thus  E(R)  = U { R  n : n = 1, 2 , . . . } .  
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THEOREM 4.5: Let (X,T) be a minimal flow. Then Sd(X) = C($(P)). 

Proo~ First suppose that X is the universal minimal flow M. It is sufficient to 

show that  Sd(M) C C($(P) ) ,  since clearly the opposite inclusion holds. 

Let (x, y) 6 Sd(M). Then (xu, yu) is an almost periodic point of Sd. It is 

sufficient to show that  (xu, yu) 6 E(P). Now yu = ~(xu), where ~ 6 D. Now 

U{D~ : n = 1 ,2 , . . .}  is dense in D, so there are 5i E D~ ~ (for some ki > 0) 

such that  5i --+ 5. It follows from the definition of convergence in G that  there 

are xi 6 M such that (x~,~(xi)) --+ (xu, 5(xu)). We have (xi,hi(xi)) 6 ~k, so 

yu) = e E(P) .  

Now suppose (X, T) is a minimal flow, and let ~r: M -+ X be a homomorphism. 

Then Sd(X) : 7C(Sd(M)) = r(C(E(P(M)))) = C(~r(C(P(M)))) C C(E(P(X)). 
| 

THEOREM 4.6: Let (X, T) be a minimal flow, and let k be a positive integer. 

Then Pk(X) C p-----(~k C Pk+I(X). Thus if h(X) = k, then Sd(X) = P(X)  k. 

Conversely, if Sd(X) = P(X) k then 5(X) = k or k + I. 

Proo~ PI -- P and /'2 -- C(P) -- PP C ~2. Suppose Pk C ~k. Then 
Pk+l = c(-Pkk) = PPk C ~-fik = pk+l. 

To prove the second inclusion, first suppose X = M, the universal minimal 

flow, and let (m, m') 6 ~k.  Then, if u is a minimal idempotent, (mu, m'u) E -ilk 
so m'u = 5(mu) where 5 6 D1 k C Dk. Then (mu, m'u) 6 Pkk SO (m,m')  6 

C(Pk) -= Pk+l. Note that this discussion shows that an almost periodic point of 

~k is in Pkk. 
Now let (X, T) be a minimal flow, and let ~r: M --~ X be a homomorphism. 

Let (x, x') be an almost periodic point in P(X)  k. We show that there is an 

almost periodic point (m,m')  C P(M) k such that r(m,m')  = (x,x'). This is 

proved by induction on k. The case k = 1 is known. Suppose it holds for k 

and let (x, x') be an almost periodic point of P(X)  k+l. Then (x, y) E P (X)  k, 
(y, x') E P(X)  for some y and we may assume that  (x, y) and (y, x') are almost 

periodic. Let (m, no) e p----~k and (n, n') 6 P(M) be almost periodic with 

r (m,  no) = (x, y) and ~r(n, n') = (y,x ') .  We may also suppose that (n, no) is 

almost periodic, so no = a(n) for some a 6 G. Since ~r(n) -- ~r(n0) we have 

r a  = ~r. Then (no, a(n')) = (a(n),a(n')) 6 P (M) ,  so (m,(~(n')) 6 P(M) k+l 
with 7r(m, a(n ' ) )  = (x, x'). 

Suppose now that (x, x') 6 P (X)  k. If u is a minimal idempotent, (xu, x'u) 

is almost periodic, so (xu, x'u) = ~r(m, m') where (m, m') is an almost periodic 
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point of p(~))k .  Thus (m,m' )  • Pk(M),  so (xu, x'u) • ~r(Pk(M)) = Pk(X) .  

Therefore (x,x ')  • C(Pk(X) )  = Pk+I(X).  I 

THEOREM 4 . 7 :  Let (X,T)  be a minimal flow. Then Sd(X)  = P , ( X ) ,  where 

~/ <_ w. Thus the distal order 5(X, T) of any minimal flow is <_ w. 

Proof: By Theorem 4.6 for every positive integer k, ~k C Pk+l so £ (P)  C 

Uk>_l Pk and Sd(X)  = C(£(P))  C C((.Jk> 1 Pk) = P~. I 

§5. M o r e  a b o u t  t h e  r e l a t i ons  Pk 

THEOREM 5.1: Let 7r: X --~ Y be a homomorphism of minimal flows. Let 3, be 

a positive integer or w. Then 7c(P.y(X)) = P.y(V). 

Proo~ It is well known (see also Lemma 2.2) that ~r(P(X)) = P ( Y ) ,  and 

therefore n ( P ( X ) )  = P ( Y ) .  The result for positive integers now follows by 

induction, using Lemma 2.2. Induction also shows that rc(P~)(X) C P~(Y) .  

If (y,y') • Ui<~P~(Y)), then (y,y')  = lim(yi,y~) where (Yi,y~) • Ps,(Y)  = 

~rPs,(X). We may suppose (xi, x~) --~ (x,x ')  • Pw(X).  Then (y,y')  = 7c(x,x') • 

r (P~(X) ) .  An application of Lemma 2.2 finishes the proof. I 

Let (X, T) be a minimal flow with 6 (X)  = A. Let r :  M -~ X be a homomor- 

phism. 

L E M M A  5.2: Let g • G. Then ~r(gr(g)) C P~(X) if  and only if  g • A D , .  

Proof." I f g  = a6 with a C A and 5 C D, ,  then, i f m  C M, ~r(m,g(m)) = 

~r(m, a~(m)) = 7r(m, 5(m)) • ~r(P,(M)) = P.y(X). Suppose ~r(gr(g)) • P , ( X ) .  

Then ~r(m,g(m)) = r(mo, 6(too)) where 5 • D~. We may suppose mu = m and 

mou = mo. Then m0 = a(m) and/i(m0) = ag(m),  where a , a  • A. It follows 
that g = a-16a • AD.  r. I 

THEOREM 5 .3 :  Let k > 1 be a positive integer. 

equivalent: 

(i) Sd(X)  = Pk(X);  i.e., 5(X)  <_ k. 

(ii) D C ADk-1.  

(iii) ADk_ 1 is a group. 

(iv) AD = ADk_I .  

(v) Pk(X)  is an equivalence relation. 

Then the following are 
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(vi) Pk(X) is dosed. 

Proof: Suppose D c ADk-1, and let (x, y) • Sd(X). Then,  if u is a minimal 

idempotent ,  (xu, yu) is an almost periodic point  in Sd(X). Let (m, n) be an al- 

most  periodic point  in Sd(M) with ~r(m, n) = (xu, yu). Then  n = 5(m) where 5 • 

D, so 5a~' with a • A and 5' • Dk-1.  Then  (xu, yu) = lr(m, n) = 7r(m, (f(m)) = 

r(rn, ah'(m)) = re(m, ~'(m)) • zc(gr(~')) • zc(Pk_l(M)) = Pk-I(X).  Therefore 

(x,y) • C(Pk-I(X))  = Pk(X). 
Suppose Sd(X) = Pk(X), and let ( f •  D. Let  m • M w i t h m u  = m. Then  

(m, 5(m)) • Sd(X), so (x, y) = ~r(m, (f(m)) is an almost periodic point  ofSd(X) = 
Pk(X), so (x,y) • Pk-I(X).  Then  ~r(gr(5)) • Pk-I(X)  and, by Lemma 5.2, 

• ADk_I. 
Hence (i) and (ii) are equivalent. Obviously (i) ~ (v) and (vi), and (since 

D1 C Dk C ADk c AD, which is a group) the equivalence of (ii), (iii), and (iv) 

follows easily. 

If Pk(X) is closed, then it is a closed capturing set containing A, so Pk(X) = 
Sd(X), and therefore (vi) ~ (i). 

Finally, we show tha t  (v) ~ (ii). Suppose Pk (X) is an equivalence relation. 

Suppose ai • ADk-1, i = 1,2; i.e. (Lemma 5.2) zc(gr(ai)) C Pk- l (X)  C Pk(X). 
Thus we can find m E M such tha t  zr(m, al(m)) and zC(al(m),a2al(m)) are in 

Pk(X). By our  assumption also zc(m, a2al(m)) • Pk(X); i.e., a 2 a l  • Ank-1.  
Now Lemma  4.4 implies D C ADk_ 1. | 

THEOREM 5.4: Let (X, T) and (Y, T) be minimal flows and let ~: X -+ Y be a 
homomorphism. Then 5(Y) <_ 5(X). If  the homomorphism r is proximal, and 

> o,  t h e n  = 

Proof: Suppose a (X)  = % Then  by Theorems 2.1 and 5.1, Sd(Y) = 7r(Sd(X)) = 
~r(PT(X)) = P~(Y). Therefore (f(Y) <_ q, = a(X) .  

Now suppose zr is proximal. If a(Y) = w, then it follows from the first par t  

of this proof  tha t  5(X) = w. Suppose 5(Y) = k, a positive integer. We show 

tha t  ~r-l(Pk(Y)) = Pk(X) and (using Theorem 2.1) this implies the equali ty of 

the distal orders. It is known tha t  ~r-I(P(Y)) = P(X) ,  so suppose k > 1. Let  

7r(x, x') = (y, y') E Pk(Y). Let u be a minimal idempotent  such tha t  (yu, y'u) E 
Pk-l(Y) .  Then  zc(xu, x'u) = (y,y'). Let (Xo, X~o) be an almost periodic point  

in Pk-I(X)  such tha t  7r(xo, Xro) = (y, y'). Since 7r is proximal, there is a unique 

minimal set in ~r-l(yu, y'u)T, so (xu, x'u) • (Xo,X'o)T C Pk-~(Z), and (x,x') • 
C(Pk-l (X))  = Pk(X). | 
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§6. A c h a r a c t e r i z a t i o n  o f  t he  e q u i c o n t i n u o u s  s t r u c t u r e  r e l a t i o n  for  

minimal  flows 

Next, we characterize the equicontinuous structure relation for minimal flows in 

terms of the capturing relation. 

Let Eo -- {c~ • G : gr(a) C Q} and let E = {a • G : gr(~) C Sea(M)}. 
Recall that  D = {c~ • G : gr(~) C Sd(M)} is the group of the universal distal 

minimal flow. It is easy to see that D and E are normal subgroups of G. E0 is 

closed under inversion and conjugation by elements of G but in general is not a 

subgroup of G. 

LEMMA 6.1: E = EoD. 

Proo~ Let e C E, and let 7r: M -+ Md (where Md = M/Sd(M),  the universal 

distal minimal flow). If m • M, (m, e(m)) • Sea(M), so ~(m, e(m)) e Sea(Md). 
Now Q is an equivalence relation in distal minimal flows, so r(m, e(m)) • Q(Md). 
Let n • M such that (m, n) • Q(M) and ~(m, n) = ~r(m, e(m)). We may assume 

that (m, n) is an almost periodic point, so there is an h • E0 such that n = h(m). 
Let 5 e G such that 5(n) = ~(m). Now ~(5(n)) = ~(e(m)) -- r (n) ,  so r5  -- 

and therefore 5 • D. Also e(m) = 5(h(m)), so e = 5h • DEo = EoD. I 

We remark that it can be shown that there is a subgroup G' of G such that 

E = G'D. However, we will not need this stronger result. 

The following result, which relates the distal and equicontinuous structure 

relations, was communicated to us by Bob Ellis. 

THEOREM 6.2: Let (X, T) be a minimal flow. Then S e a ( X  ) = Q(X)Sd(X). 

Proof: It is sufficient to prove the result for X = M, the universal minimal flow. 

The general case will follow from Theorem 2.1. Let (x,y) • Sea(M). Suppose 

xu = x. Then (x, yu) is an almost periodic point of Sea(M), so y = e(x) where 

E • E. By Lemma6.1,  e = 5c~ where 5 • D and a • E0. Then (a(x),yu) • 
Sd(M) and (x, a(x)) • Q, so (x, yu) • QSd(M). Now (y, yu) • P C Sd(M) so 

(x, y) • QSd(M). I 

Let (X,T)  be a minimal flow, and let Q#(X) = Q# be the smallest closed 

capturing set containing Q(X). Let lr: M --+ X be a homomorphism, and let 

K = ((a,b) • M × M :  ~(a,h(b)) • Q# for all h • E0}. 

LEMMA 6.3: K is a closed captnring set containing Sa(M). 

Proo~ Since Q# is closed and capturing, the same holds for K. If a • M and 

h C E0, then (a,h(a)) • Q(M) so ~(a,h(a)) • Q(X) c Q#, and (a,a) • K. 
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Therefore A C K,  and since K is closed and capturing, it follows from Theorem 

3.3 that  Sd(M) c K. I 

THEOREM 6.4: Let (X, T) be a minimal flow. Then Q# = Sea. 

Proo~ Since S~q(X) is closed, capturing, and contains Q, Q# c Seq(X). Let 

(x, y) be an almost periodic point of S~q(X) and let (a, b) E Seq(M) be almost 

periodic with ~r(a, b) = (x, y). Then b = e(a) where e E E. Since E = EoD, we 

have e = h(f with h E E0 and 5 E D. Now (a, 5(a)) E Sd(M) C K. By definition 

of K,  (x, y) = r (a ,  b) = ~r(a, e(a)) = ~r(a, hh(a)) E Q#. 
Therefore, all almost periodic points of S~q(X) are in Q#. Since Q# is 

capturing, it follows that Scq(X) c Q#. 1 

COROLLARY 6.5: Let (X,T)  be a minimal flow. 
equivalent: 

(i) Q is an equivalence relation. 

(ii) C(Q) = Q. 
(iii) PQ = Q. 

Then the following are 

Proof: This follows from Lemma 1.2 and Theorem 6.4. I 

§7. T h e  e q u i c o n t i n u i t y  o r d e r  

For a flow (X, T) let Q1 -- Q(X), Q2 --- C(QI) and inductively, if ~/is an ordinal 

number and Qi has been defined for i < % define Q~ -- c ( u i <  ~ Qi). (Therefore 

Q~+I = C(Q~).) 
The e q u i c o n t i n u i t y  o r d e r  of (X,T)  (denoted e = e(X,T)) is defined to 

be the least ordinal number "y for which the equicontinuity structure relation 

S~q(X) = Q~(X). (e(X, T) = 1 if and only if Q(X, T) is an equivalence relation.) 

For k a positive integer, let Ek = (c~ E G : gr(a) C Qk(M)). In particular 

Eo = (a E G : gr(~) C Q(M)) .  Note that the Ek are closed subsets of G. 

Also, since O(Qk(M)) = Qk(M) for 0 E G, it follows easily that Ek is preserved 

under conjugation by elements of G. Let E = ~(M/S~q), the Ellis group of the 

universal equicontinuous minimal flow; then we have E -- E~(M). 

LEMMA 7.1: E = EoE~. 

Proof: Since clearly Pk C Qk for every k ~ w, we have Dk C Ek, hence (by 

Lemma 5.4) D C E~. By Lemma 6.1, this implies E = EoE~. I 
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Question: Does E -- Eo~? 

Example  7.2: Let X = T - -  R/Z and a E R \ Q .  Let a and b be the self- 

homeomorphisms of X defined by 

a ( t ) = t + c ~  ( m o d l ) ;  b ( t )=  t -  + , O _ < t < l ,  

and let 1" be the group generated by a and b. McMahon introduced the flow 

(X, I') as an example of a minimal and weakly mixing flow where the relation 

Q ( X )  is not an equivalence relation ([M]). It is easy to see that  in this flow, 

P = { (x ,x ' ) :  I x -  x' I < 1/4} and P = Q = { ( x , x ' ) :  I x -  x '  I <_ 1/4}. Moreover, 

we have 

Q2 = P2 = C(Q)  = C ( P )  = {(x ,x ' ) :  I x - x '  I < 1/2},  

whence C(Q)  = {(x, x ' ) :  [ x - x ' l  _< 1/2} = X x X = SCq = Sd. Thus McMahon's 

example has distal and equicontinuity order 3. 

If, for an integer n > 2, we let 

a(t) = t + a ( m o d l ) ;  b(t) = t -  + - -  O <_ t < l,  
n . '  

we obtain a flow (X, F) with distal and equicontinuity order k, where k is the 

least integer such that k / n  > ½; i.e., k = [n/2] + 1 (i.e., Qk-1 ~ Qk = X x Z) .  

In the next section we will have to construct more sophisticated examples in 

order to get minimal cascades (i.e., Z-flows) with distal order exactly k, k = 

0 , 1 , 2 , . . . ,  and k = w. 

We conclude this section with the following observations. 

Another approach to the equicontinuity order is to define it via the 

"prolongation". One defines for a subset A C X of a flow (X, T) its prolon- 

gation as the set 

H(A) = {x:  ~ nets {xi} in X, {ti} in T such that x~ -+ x, x i t ,  -+ z e A}  

The proof of the following lemma is immediate. 

LEMMA 7.3: (i) I r A  is closed, then II(A) is closed. 

(ii) H(A) = Q. 
(iii) Let  7r: X --+ Y be a flow homomorphism,  and let K C X .  Then 7r(II(K)) C 

II(¢r(K)). I f  ~ is an automorphism of (X, T), ~(II (g ) )  = I I (~(g) ) .  
(iv) C ( A )  C II(A). 

Yi , Note that, for any flow, Q = H ( A ) .  Now set Q ~ =  A , Q ~ = Q =  (Q0) ,and 

for any ordinal % Q~ H ( ~  (so ' : Q-y+1 = n(o~)) .  
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It  is easy to see that  II(Seq) C Seq, SO Q~ c Seq. Also, it follows from (iv) of 
! 

Lemma 7.3 that  Q~ c Q~. Therefore, there is an ordinal number 7 _< e(X) for 

which Q~ = S~q(X). The alternative definition of the equicontinuity order is to 

define it as e'(X),  the smallest ordinal for which Q# = Seq(X). This is the same 

ordinal for which the Q# stabilize (Q~+I = Q~). Clearly e ' (X) _< e(X). 

Corresponding to Theorem 4.7, we have: 

THEOREM 7.4: Let (X, T) be a minima/ttow. Then S~q(X) = Q~ where ~/ <<_ w. 

Thus e '(X) _< a~. 

We omit the proof, which is a close paraphrase of the proof in section 4 

of the result that  the distal order is _< w. One replaces the Dk with Fk = 
! • a :  gr( ) c Qk}- 

§8. E x a m p l e s  

In this section we use the letter ~- to denote the generator of every Z flow. 

PROPOSITION 8.1: For every positive integer k >_ O, as well as for k = w, there 

exists a min ima/met r i c  ttow with distaI order k. 

Proof." Our examples are obtained via a slight modification of an example of 

L. Shapiro, [S]. This is a minimal flow for which proximal is an equivalence 

relation but  is not closed. 

We will briefly recall the construction in [S], keeping the same notations. Start  

with the circle K = {k E C : I k] = 1} and an element A C K which is not a root of 

unity. Thus the flow (K, T), where Tk = )~k, is an irrational rotation. Next choose 

an infinite sequence kl, k2 , . . .  E K such that  the orbits O(k~) = {Anki : n E Z} 

are mutually disjoint. Let E = Ui O(ki) and assume further that  1 ~ E.  The 

space X consists of the points {k + : k C K} where k + = k -  iff k ~ E. The 

map ¢: X -+ K is given by ¢(k +) = k. The topology on X is defined as follows. 

We let the "intervals" [m- ,  k +] := ¢ -1 (m,  k) U { m - ,  k+}, where (m, k) is an arc 

on K traversed counterclockwise from ra to k, form a subbase for the topology 

on X. Clearly each subset [m- ,  k +] is both open and closed, so that  X is a 

zero-dimensional space. It  is also easy to see that  it is compact and that  the map 

¢ is continuous. 

Define ~-: X -+ X by T(k ±) ---- (Ak) ±. We can easily check that  T is a homeo- 

morphism of X,  so that  (X, r)  is a minimal flow, and that  ¢: (X, T) --~ (K, ~-) 

becomes a flow homomorphism, in fact an almost 1-1 extension. Moreover, we 

have 

P ( X , v )  = A ( X , r ) =  {(x ,x ' )  : 3k • K ( x , x ' } =  {k - , k+}} ,  
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where A(X,  T) denotes the set of doubly asymptotic pairs in X x X,  i.e., those 

pairs (x, x ')  with 

lira d('r~x, T~X ') = O, 

for some compatible metric d. 

The next stage of the construction is to form a group extension Y = X × G of 

X where G is a compact abelian group. This is done by means of a "cocycle' ,  

i.e., a continuous f :  X --+ G. Once f is given the flow on Y is defined by 

7(x,g) = (~-x, g f (x)) .  

The following auxiliary functions are then defined. First the cocycle fn(x) is 

given by 

f I]in.=o 1 f (Tix)  for n _> 0, 
f~(~) / I ]~n  f(Tix)  for n < 0, 

so that  Tn(x,g) = (vnx, gfn(x)).  For k G g set pi(k) = f ( T i k + ) f ( T i k - ) - l ;  then 

~-1 k an(k) = ][Ii=o Pi( ) for n > 0, 
[ 1-I~-2~ pi(k) -1 for n < 0, 

and ((k)  = l iml , f l_~a~(k) ,  when it exists. We recall the following Lemma 

(Lemmas 2 and 3 and Corollary 1 of [S]). 

LEMMA 8.2: 

(1) ~(k) exists iff for each g C G there is a unique gl E G such that (k+,g) is 

proximal to (k- ,ggl ) .  I f~(k)  exists, then ~(k) = gl and ~(Amk) exists for 

all m E Z. 

(2) The proximal relation P ( Y )  is an equivalence relation if[ ~(k) exists for 

every k E K.  When it is an equivalence relation 

P ( Y )  = A U { ( ( k + , g ) , ( k - , g ~ ( k ) ) ) :  k C K ,g  e G} 

u {((k-,g), (k+,g~(k)-l)): k e g , g  e a}. 

(3) P ( Y )  is closed iff ~(k) exists for every k E K (i.e., P ( Y )  is an equivalence 

relation) and lira. ~(k,) = g for a sequence k ,  of distinct elements in K 

implies g = e, the identity element of G. 

We now take G = K and refer to [S] for the details of the construction of the 

cocycle f :  X --~ K.  In fact, the only change needed is in the definition of the 

sequence em. We let el = exp(i01) for an arbi trary number 01 C (0, 7r], and then 
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for m > 1 we let e m =  exp(iO1/m). We also assume, as we clearly may, that  the 

sequences {p(n, j)  : [Jl <-n} satisfy 

min{Ip(n, j  ) - p ( n , k ) [  : Ijl, lkl <_ n, j 7 ~ k} --+oc. 

We now have a family of flows (Y01, T) with parameter 01 • (0, 7r], the S h a p i r o  

flows. As we will presently see they are all minimal flows. 

We next show that the distal order of Shapiro's flow (Y01, T) is the least n for 

which nO1 >_ 7r. 
By definition we have P0 = A and P1 = C(Po) = P(Y) ,  the proximal relation 

on Y. We prove our proposition by establishing by induction the following chain 

of claims. 

CLAIM 1: 

P1 = C(Po) = P0 U {((k+,g), (k- ,g~(k)))  : k • K , g  • G} 

U { ( (k - ,g ) , ( k+ ,g~(k ) - l ) ) :  k • g , g  • G}. 

Proof: We recall that it is shown in [S] that in the Shapiro flows ~(k) exists for 

every k • K.  Now use Lemma 8.2 (2). | 

CLAIM 1': P1 = / ) 1 U  {((x,g), (x, gexp(iO))) : x • X , g  • G,O • [-01,01]}. 

Proof: In the list of observations which lead to the conclusion that P(Y)  is a 

non-closed equivalence relation (IS], p. 524) we note (g) ~(kn) = q for all n, and 

(i) ~(k) = 1 for k ~ E. It is also easy to see that, for fixed n > 0, the set 

{~(T~kn) : lel _< max{lp(n,J)l,  IJl <- n}} 

is equal to the set {e{ : ]Jl < n}. It follows that the range of ( is 

{e{ : n = 1,2,. . . ,LjL <_ n}. Moreover, our assumption on the sequences 

{p(n, j)  : IJl < n} implies that ((Te(k,~)) is constant for long sequences of in- 

tegers. Hence if N is a positive integer, then for n sufficiently large each e{ is 

equal to ~(T*(k,,)) for (at least) N consecutive integers g. Our claim now follows 

from the identification of P(Y)  in Claim I and the observation that for a minimal 

cascade (X, r)  with X metric, given e > 0 there is a positive integer N such that,  

for every x • X, the set {x, r ( x ) , . . . ,  TN(x)} is e dense in X. | 

CLAIM 2: 

/)2 ----- C(P1) 

= P l  

U {((k +, g), (k- ,  gexp(iO)~(k))): k • K, g • G, 0 • [-01, 01]} 

U {((k- ,g) ,  (k+,gexp(iO)((k)-l)):  k • g , g  • G,O • [-01,0,1}. 
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Proo~ This  follows f rom Proposi t ion  1.1 (vi) and Cla im 1. | 

CLAIM 2':  P2 = P2 U {((x, g), (x, gexp(iO))) : x E X, g E G,/9 E [-281,  2t~i]}. 

Proof: Same as t ha t  of Cla im 1'. | 

In the same way we prove for every posit ive integer n > 1 two claims: 

CLAIM n: 

P,~ = C(Pn-1) 

= Pn-1 

U{((k+ ,g ) ,  (k-,gexp(iO){(k))): k E g , g  E G,e E [ - ( n  - 1)01, (n - 1)81]} 

U { ( ( k - , g ) ,  (k+,gexp(iO){(k)-i)): k E g , g  E G, 0 E [ - ( n  - 1)01, ( n -  1)0i]} 

and 

CLAIM n':  Pn = Pn U {((x ,g) ,  (x, gexp(iO))) : x E X ,g  E G, 8 E [-nSi,nSi]}. 

I t  now follows tha t  for every n > 1 wi th  n01 < ~r, Pn proper ly  contains P n - i  

and we deduce tha t  the Shapiro flow (Y01, T) has distal  order k, where k is the 

least posit ive integer wi th  k81 > r. This  completes  the proof  for the case k >_ 1 

an integer. 

For k = w we take any sequence Yj, j = 1, 2 , . . . ,  of min imal  flows where the 

distal  order of Yj is _> j .  Let Y~ be any min imal  joining of the countable  family 

Yj; then  clearly the distal  order of Yo¢ is w. In  fact it is easy to check tha t  Sd(Ym) 

is a subset  of U,~ Pn(Y~). 
Finally, a min imal  flow is distal  iff it has distal  order 0. The  proof  of Proposi t ion  

8.1 is now complete.  | 

COROLLARY 8.3: Shapiro's flow (Y, T) is minimal. 

Proof." Let L C Y be a fixed min imal  subset  of Y. Denot ing the act ion of k E K 

on Y by Rk: (x, k') ~+ (x, k'k), we see tha t  

Ko = {k E K :  R k L A L  ~ O} = {k E K :  RkL = L} 

is a closed subgroup  of K and tha t  Y = [JkcK RkL. I t  follows tha t  the relat ion 

S = {(y, y'):  y and y'  are in the same min imal  subset} 

is a closed equivalence relation. I t  is now easy to see tha t  P i  = P(Y)  C S 

and then,  by induction, tha t  for every n also Pn C S. Since we established 
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tha t  for some n, P~ -- Seq(Y) = R . ,  where r :  Y --~ K is the homomorphism 

k) = ¢ ( x )  and 
= ( (y ,  y ' ) :  = 

it now follows tha t  R .  C S. In particular,  K0 = K and Y = L is minimal. | 

Remark:  As we have already observed, a minimal flow is distal if and only if 

it has distal order k = 0. Since in a minimal flow the proximal relation has 

the proper ty  tha t  it is an equivalence relation when it is closed, it follows tha t  

a minimal flow has distal order k = 1 iff its proximal relation is closed. Since 

P = X x X = Sa in a weakly mixing flow X with T abelian, the distal order of  

such a flow is 2. It  is not  hard to see tha t  the Morse flow also has distal order 

k = 2 .  
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