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ABSTRACT

The capturing operation, a kind of reverse orbit closure, is defined. In
terms of this operation generalized proximal relations P,(X) for a min-
imal flow (X,T) are defined. The distal order of (X,T) is then defined
to be the least ordinal number v for which the distal structure relation
S4(X) = Py(X). It is shown that the distal order of a minimal flow is
either finite or w, the first infinite ordinal. Examples are given which
show that minimal flows of any allowable distal order actually occur. An
analogous theory is developed for the equicontinuous relation Seq(X).

§0. Introduction

ture relations in minimal flows.

In this paper, we obtain characterizations of the distal and equicontinuous struc-

starting with the proximal and regionally proximal relations, respectively. To ev-
ery minimal flow, we can assign ordinal numbers, the distal and equicontinuous
orders of the flow. It is shown that the distal order of a minimal flow is either
finite or w, where w is the first infinite ordinal. An important element of these
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These arise by means of iterative processes,
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constructions is the capturing operation, which is a kind of reverse orbit closure.
We show that the distal structure and equicontinuous structure relations are the
smallest closed capturing sets containing, respectively, the proximal and region-
ally proximal relations. In the final section of the paper, we present examples
which show that minimal flows of any allowable distal order actually occur.

We now review some basic dynamical notions and establish our notations. A
flow (X, T) is a (right) topological action (z, t) — zt of a topological group T on a
compact Hausdorff space X. The flow (X, T) is minimal if 2T = X for all z € X.
If (X, T) and (Y, T) are flows, a homomorphism is a continuous equivariant map =
from X onto Y (thus m(xt) = w(z)tforx € X,t € T). Inthiscase Y issaid tobe a
factor of X, and X an extension of Y. The relation R, = {(z,z') : n(z) = n(z")}
is a closed T invariant equivalence relation. Conversely, every closed T invariant
equivalence relation R defines a factor flow ¥ = X/R and a homomorphism
7: (X, T) — (Y,T) such that R = R,.

We will make extensive use of the Galois theory of minimal flows, as developed
by Ellis. Let (M, T) be the universal minimal flow. This is the (unique) minimal
flow of which every minimal flow with acting group 7 is a factor. Let G be the
automorphism group of (M, T). Then G has a compact, T1 topology, for which
multiplication is separately continuous, and for which inversion is continuous.
This topology is in general not Hausdorff, nor is multiplication jointly continuous.

The topology of G can be described in terms of graphs. For ¢ € G, the graph
of ¢ is the set gr(p) = {(m, p(m)) : m € M}. The automorphism # € G is in
the closure of the subset @ of G iff gr(¢y) C closure{(m, ¢(m)) : ¢ € ®}, where
the latter closure is taken with respect to the product topology in M x M. In
terms of nets: let {¢;} be a net in G, then ¢; — ¢ if there is a net {m;} in M
with m; — m such that ¢;(m;) = @(m).

To every minimal flow (X, T') one can associate a closed subgroup G(X) of G
(the “ Ellis” group of (X,T)) as follows. Let m: M — X be a homomorphism,
and let G(X) = {¢ € G : mp = 7}. (A different homomorphism gives rise to a
conjugate subgroup.) Two minimal flows have the same Ellis group if and only
if they are “ proximally equivalent” — that is, they have a common proximal
extension. For further details, see [A] and [E].

If (X,T) is a flow, then z and y in X are said to be proximal if for any o € U
(the unique uniform structure of the compact space X)) there is a ¢ € T such that
(xt,yt) € a. We denote the proximal relation by P. The flow (X, T) is said to be
distal if P = A, where A = {(z,z) : z € X} is the “diagonal” in X x X (there
are no non-trivial proximal pairs).
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The flow (X,T) is called equicontinuous if the collection of self maps of X
defined by T is an equicontinuous family: that is, if for every oo € U there is a
B € U such that if (z,z’) € B then (zt,z't) e forallt € T (“ BT C a7).

Equicontinuity can be characterized in terms of regional proximality. The
points = and y are called regionally proximal if for any o € U there are ' and 3/
with (z,z') € @ (y,7') € @ and t € T such that (z't,y't) € a.

We denote the regionally proximal relation by Q). Clearly P C Q. It is easy to
see that a flow is equicontinuous if and only if @ = A.

Every flow (X,T) has a maximal distal and a maximal equicontinuous factor,
(X4, T) and (Xeq,T) respectively. That is, (Xg4,T) is distal, and every distal
factor of (X, T) is a factor of (Xg4,T). (Xeq,T) has the corresponding property
for equicontinuous factors. Thus there are closed T invariant equivalence relations
Sq and S, such that X/S; = X4 and X/Sey = Xeq. Since an equicontinuous
flow is distal, we have Sg(X) C Seq(X).

It is immediate that P C S; and @ C S.q. However, in general neither P nor
Q is an equivalence relation. Even if P is an equivalence relation, it need not
be closed. (Q is always closed, and in many important cases is an equivalence
relation in minimal flows.)

The following classical theorem of Ellis and Gottschalk [EG] characterizes Sy
and Seq in terms of P and Q).

THEOREM: Let (X,T) be a flow. Then Sy is the smallest closed T invariant
equivalence relation containing P and Sg, is the smallest closed T invariant
equivalence relation containing Q.

ACKNOWLEDGEMENT: We began our work on this paper during the special year
in ergodic theory at the Institute for Advanced Studies of The Hebrew University
in Jerusalem, 1996-7. We would like to thank the Institute for its support.

§1. The capturing operation

Let (X,T) be a flow. We define an operation on subsets of X, the “capturing”
operation. If K C X, the capturing set of K, C(K) = {z € X : 2T N K # 0}.
We say that K has the capturing property or is a capturing set if C(K) = K.

The following proposition lists elementary properties of the capturing operation
and capturing sets.

PRrOPOSITION 1.1: Let (X,T') be a flow.
(i) C is an idempotent operation. That is, for any K C X, C{C(K)) = C(K).
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(ii) The union and intersection of a family of capturing sets is capturing.

(i) K C X,and t € T, Kt C C(K). (Hence a capturing set is T invariant.)

(iv) If ¢ is an automorphism of (X, T) and K C X then o(C(K)) = C(p(K)).

(v) For any subset K of X, there is a smallest closed capturing set K* con-
taining K.

(vi) Suppose K is a closed invariant subset of X. Then y € C(K) if and only
if y is proximal to some point of K.

(vii) Let (Y,T) be a flow, let m: X — Y be a homomorphism, and let L C Y.
Then C(n~1(L)) = n~Y(C(L)). (Hence if L is capturing, so is 7 ~1(L).)

(viii) Let K bhe a closed invariant set and let z € C(K) be almost periodic.
Then z € K.

(ix) Let K be an invariant capturing set. Then K is closed if and only if K
and K have the same almost periodic points.

Proof: 'We omit the easy proofs of (i), (ii), (iii), (iv) and (vii).

Let £ be the family of closed capturing sets containing K. (X € Lso £ # 0.)
Clearly K* = N{L : L € L} is the smallest closed capturing set containing K.

To prove (vi), suppose that y is proximal to some z € K. Let I be a minimal
right ideal in E(X,T), the enveloping semigroup of (X, T'), such that zp = yp for
allp € I. Since yp = xp € K, we have y € C(K). Conversely, suppose y € C(K).
Since K is closed invariant, there is a minimal right ideal I in E(X, T) such that
ylI C K. Let u be an idempotent in I. Then yu € K and yu is proximal to y.

Let z be an almost periodic point of C(K). Let p € BT such that zp € K.
Since z is almost periodic, there is a ¢ € 8T such that z = zpg € Kq C K. This
proves (viii).

Finally, suppose K is invariant, capturing, and that K and K have the same
almost periodic points. Let z € K. Then if u is a minimal idempotent, zu is an
almost periodic point in K. Hence zu € K, and z € C(K) = K, which proves
(ix). ]

Our main interest in the capturing operation is as it is applied to the product
flow (X x X, T). (T acts on the product by acting on each coordinate: (z,z')t =
(xt,z't).) Note that C(A) is just P, the proximal relation.

LEMMA 1.2: Let (X, T) be a flow and let R be a closed invariant subset of X x X
Then PR C C(R) C PRP. If (X,T) is minimal, then C(R) = PR.

Proof: Let (z,y) € PR so (z,z') € P and (z',y) € R for some =’ € X. Let
p € E(X,T), the enveloping semigroup of (X,T), such that p = z'p. Since
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R is closed invariant, (z'p,yp) € R so (zp,yp) € R and (z,y) € C(R). If
(z,y) € C(R), let I be a minimal right ideal in F(X,T) such that (zp,yp) € R
for p € I. If u is an idempotent in I then (z,zu) € P and (y,yu) € P, so
(z,y) € PRP. If (X,T) is minimal, there is an idempotent u € I such that
zu =z, so (z,y) € PR. [ |

THEOREM 1.3: Let (X,T) be a flow. Then S4(X) and Seq(X) are capturing sets
in (X x X,T).

Proof: Since P C Sy, C(Sq) C PS4P = Sy, so C(Sg) = Sy, and similarly
C(Seq) = Seq- ]

§2. The image of the distal structure relation under a homomorphism

Now we consider the distal and equicontinuous structure relations in minimal
flows. (The interested reader can find in [V] a proof of the relative version of the
following result.)

THEOREM 2.1: Let (X, T) and (Y,T) be minimal flows and let m: X — Y be a
homomorphism. Then w(S4(X)) = S4(Y) and 7(Seq(X)) = Seq(Y).

The proof of Theorem 2.1 depends on two lemmas.

LeMMA 2.2: Let (X,T) and (Y,T) be minimal flows and let m: X — Y be a
homomorphism. Let K be a closed invariant subset of X x X. Then w(C(K)) =
C(n(K)). In particular (taking K = A), n(P(X)) = P(Y).

Proof: It's easy to see that 7(C(K)) C C(n(K)). Let (y,y’) € C(w(K)). Then
there is a minimal idempotent v € 8T such that (y,y")v € n(K). Let (z,2') € K
such that (z,2')v = (z,2') and n(z,2") = (y,y’). Let w and w' be minimal
idempotents in BT such that yw =y, y'w’ =y, wv = v, and w'v = v. (This can
be achieved by choosing v, w, and w’ in the same minimal right ideal of 8T.)
Then m(zw,z'w’) = (y,y’). Since (zw, 2'w)v = (zv,z'v) = (z,2') € K, we have
(zw,z'w’) € C(K). |

The next lemma concerns regular minimal flows. (X, T') regular means that all
almost periodic points of (X x X, T) are on graphs of flow automorphisms. That
is, denoting the automorphism group of (X,T) by I, if (z,y) is almost periodic,
there is a ¢ € T such that y = ¢(z).
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LEMMA 2.3: Let (X, T) and (Y,T) be minimal Hows with (X, T) regular, and let
m: X = Y be a homomorphism. Let S be a closed T' and I" invariant equivalence
relation on X and let R = =(S). Suppose R is a capturing set. Then R is an
equivalence relation.

Proof: It is immediate that R is reflexive and symmetric. Since R is capturing,
it is sufficient to show that if (y,v'), (v/,9¥”) € R with (y,v’,y”) an almost
periodic point, then (y,y”) € R. Let (z,2'), (¢/,2") € S with n(z, ') = (y,v')
and 7(z',2") = (y',y"). Without loss of generality, (z,z’,2',2") is an almost
periodic point. Let ¢ € T with ¢(2') = 2'. Since n(z') = 7(z") we have mp = 7.
Let 2" = @(2”"). Then w(z") = mp(2") = m(z") = y”. Since S is T invariant,
(z,z") € S and (y,y") = w(z,2") € R. ]

Proof of Theorem 2.1: The proofs for the distal and equicontinuous structure
relations are word for word the same, so we just give the proof for the former
case.

Clearly R = n(S4(X)) C S4(Y). For the other inclusion it suffices to show that
R is an equivalence relation, since by Lemma 2.2 it contains P(Y). Assuming
first that X is regular, we observe that S = S4(X) is I'-invariant and capturing
(Theorem 1.3). Lemma 2.2 now implies that R is also capturing and we conclude
by Lemma 2.3 that R is an equivalence relation, so that in this case 7(S4(X)) =
Sa(Y).

In the general case let X be any regular extension of X, e.g., the regularizer
of X or M, the universal minimal flow. We now have the commutative diagram:

By the first part of the proof we now get

(Sa(X)) € Sa(Y) = A(Sa(X)) = mo(Sa(X)) = 7(Sa(X)). W
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§3. A characterization of the distal structure relation for minimal flows

In order to characterize the distal structure relation for minimal flows, we define
a family of “proximality” relations. Let Py = A, the diagonal, P, = C(Fy) (so
P, = P). Inductively, if 7 is an ordinal number and P, has been defined for ¢ < «,
define Py = C(U;, P.). (Therefore P,41 = C(Py).)

The following proposition follows easily from Proposition 1.1 and Theorem 1.3.

ProprosiTiON 3.1: Let (X,T) be a flow. Then, for every ordinal number 7,
P, C 84 and (if v > 0) P, is a capturing set.

Let P#(X) be the smallest closed capturing set containing A. It follows from
general principles that there is an ordinal number v such that P,(X) = P#(X).
Since Sg(X) is capturing we have P#(X) C S3(X). We show that for minimal
flows, in fact P#(X) = S4(X). For this we require a lemma.

LeMMA 3.2: Let (X, T) be a regular minimal flow with automorphism group T.
Let K be a reflexive, symmetric, closed capturing set in X x X. Suppose the set
F={aeG:gr(a) C K} is asubgroup of T'. Then K is an equivalence relation.

Proof:  Suppose (z,y) and (y, z) are in K. Let u be a minimal idempotent in
BT, and let £ = zu, § = yu and Z = zu. Then (F,7) and (§F,2) are almost
periodic points of K (by Proposition 1.1, K is invariant) so there are ¢ and v in
I with § = ¢(Z) and z = (7). Since (z,9) € K, ¢ € F, and similarly ¢ € F.
Thus Z = ¢(Z), and since F is a group, ¥ € F and (Z,%) € K. Finally, since
K is capturing, it follows that (z,2) € K. |

THEOREM 3.3: Let (X,T) be a minimal flow. Then Sq(X) = P#(X).

Proof: By Theorem 1.3, P# C S4(X). For the other direction we observe that it
is sufficient to show that P# is an equivalence relation. In fact, since P = C(A)
we have P C P# and thus, P# being closed and invariant (Proposition 1.1.(iii)),
if it is also an equivalence relation we have P# D S3(X), as the latter is the
smallest closed invariant equivalence relation containing P.

We first prove this for the universal minimal flow (M, T).

Let G be the automorphism group of (M, T). If ¢ € G it follows from Propo-
sition 1.1 that (id x ¢)(P#) is a closed capturing set.

Let B= {p € G : (id x ¢)(A) N P# #£ 0}. We show that B is a group. Note
that B consists of those ¢ € G whose graphs meet P# (equivalently, those p € G
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whose graphs are contained in P#). Since P# is symmetric, it follows that B is
closed under inversion.

Let ¢ € B. Since ¢! € B, A C (id x p)(P#). By minimality of P#,
we have P#* C (id x ¢)(P*), and similarly P# C (id x ¢~1)(P#). Therefore
(4d x ) (P#) = P# for all p € B, and it now follows easily that B is a group. It
now follows from Lemma 3.2 that P# is an equivalence relation in M.

Now, suppose (X, T') is a minimal flow, and let 7: M — X be a homomorphism.
Now, by Proposition 1.1, 7~1(P#(X)) is a closed capturing set in M x M contain-
ing A(M), so P#(M) c 7= }(P#(X)). Then S4(X) = n(Sa(M)) = n(P#(M)) C
P#(X). Since S4(X) is capturing, we have P#(X) C S4(X), and the proof is
completed. ]

84. The distal order of a minimal flow

Let (X, T) be a minimal flow. The distal order of (X, T) (denoted 6 = 6(X,T))
is defined to be the least ordinal number ~y for which the distal structure relation
S4(X) = Py(X). (6(X,T) =0if and only if (X, T) is distal.) We will show that
in fact for every minimal flow, §(X,7T") < w where w is the first infinite ordinal.

In the last section we will see that for every & < w there exists a minimal flow
(X,T) with §(X,T) = k.

LEMMA 4.1: Let 7: X — Y be a homomorphism of minimal flows. Let (y,y’)
be an almost periodic point in P(Y). Then there is an almost periodic point
(z,2") € P(X) such that n(z,z") = (y,9').

Proof: Let (xg,z}) € P(X) such that n(zo,z() = (y,3’). Let u be a minimal
idempotent such that (y,y")u = (y,¥’). Then m(zo,zg)u = (y,¥'), and (since
P(X) is closed invariant) (zg,z)u € P(X). |

For k a positive integer, let
Dy ={a€G:gr(a) C P(M)}={a€G:gr(a) C Pa(M)}.

In particular Dy = {a € G : gr(a) ¢ P(M)} = {a € G : gr(a) C P,(M)}. Note
that the Dy are closed subsets of G. Also, since §(P(M)) = P(M) for 8 € G,
it follows easily that Dy is preserved under conjugation by elements of G.

Let D be the closed subgroup of G generated by D;.

THEOREM 4.2: Let F be a closed subgroup of G containing Dy. Let (X,T) be
a flow with group F. Then (X,T) is a proximal extension of a distal flow.
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Proof: It is sufficient to show that P(X) is closed. For this, in turn, it is

sufficient to show that P(X) has no non-trivial almost periodic points (by (viii)

of Proposition 1.1). Let (z,z') be an almost periodic point of P(X) and (if
7: M — X is a homomorphism) let (m, m’) be an almost periodic point in P(M)
with m(m,m') = (z,2'). Then m’ = a(m) with o € D; C F. Hence 7o = 7, s0

=1 [

COROLLARY 4.3: (i) Let (X,T) be a distal minimal flow with group A. Then
D; C A

(ii) D is the group of the universal distal minimal flow.

(iii) Dy C D, for k=1,2,....

Proof: (i) Let m: M — X be a homomorphism, and let x = n(m) where mu = m.
If o € D, then na(m) € P(z) = {z}, s0o ra = 7, and a € G(X) = A.

(ii) By Theorem 4.2, D is the group of a distal minimal flow. If (X,T) is a
distal minimal flow with group A, then by (i), Dy C A, so D C A.

(iil) If @« € Dy, gr(a) C Pe(M) C Sq(M), s0o a € D. ]

LEMMA 4.4: (i) If o € Dy, (id x @)(Py) C Pgyq for k > 1.
(11) DD, C D41 (k =1,2,.. )
i) D=U{D:": k=1,2,..} =U{Dx : k= 1,2,.. .}.

Proof: (i) The proof is by induction on k. (id x a)(P1) = C{(id x a)(A)) C

C(P) = P,.
Suppose (id X a)Py_; C Py. Then

(id x )Py = (id x @)(C(Px_1)) = C((id x @)(Px_1)) C C(Pg) = Piy1.

(ii) Let o € Dy, B € Dg. Then (id x af)(x,z) = (id x a)(id x B){(z,z) €
(id x a)(Py) = (id x @)C(Pr_1) = C((id x a)(Pr_1)) C C(Px) = Pry1.

(iii) It follows easily from (ii) that D¥ C Dy, and clearly (J{D¥ : k =1,2,...}
is a group. Since the closure of a subgroup of G is a group,

D= J{D¥:k=1,2,.. }c| D :k=1,2,..},
which is a subset of D. |

Our next result is an alternate characterization of the distal structure relation
for a minimal flow. Let R be a symmetric and reflexive relation, and let £(R) be
the equivalence relation generated by R. Thus £(R) = {R":n=1,2,...}.
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THEOREM 4.5: Let (X,T) be a minimal flow. Then S;(X) = C(E(P)).

Proof: First suppose that X is the universal minimal flow M. It is sufficient to
show that Sg(M) C C (S_(?S), since clearly the opposite inclusion holds.

Let (z,y) € Sq(M). Then (zu,yu) is an almost periodic point of 4. It is
sufficient to show that (zu,yu) € £(P). Now yu = d(zu), where § € D. Now
U{D? : n = 1,2,...} is dense in D, so there are §; € D¥ (for some k; > 0)
such that 6; — 4. It follows from the definition of convergence in G that there
are ; € M such that (z;,6;(z;)) — (zu,d(zu)). We have (z;,6;(x;)) € P so
(zu, yu) = (zu, é(zu)) € E(P).

Now suppose (X, T) is a minimal flow, and let m: M — X be a homomorphism.
Then Sq(X) = m(Sa(M)) = n(C(EPMD))) = C(x(£(POT))) € CEPX)).
|

THEOREM 4.6: Let (X,T) be a minimal flow, and let k be a positive integer.

Then Po(X) C P(X)' C Piy1(X). Thus if §(X) = k, then Sq(X) = P(X) .

Conversely, if Sq(X) = P(X)" then §(X) =k or k + 1.

Proof P, = P and P, = C(P) = PP c P°. Suppose P, C P*. Then
Piy1 = C(P) = PP, c PP* =P

To prove the second inclusion, first suppose X = M, the universal minimal
flow, and let (m, m') € P Then, if u is a minimal idempotent, (mu, m'u) € —pk,
so m'u = §(mu) where § ¢ D¥ C Dy. Then (mu,m'u) € P so (m,m') €
C(Py) = Pyy1. Note that this discussion shows that an almost periodic point of
P isin P

Now let (X,T) be a minimal flow, and let =: M — X be a homomorphism.

Let (z,z’) be an almost periodic point in P(X) . We show that there is an
——k

almost periodic point (m,m’) € P(M) such that w(m,m’) = (z,z'). This is

proved by induction on k. The case £k = 1 is known. Suppose it holds for &

and let (z,z’) be an almost periodic point of (X)kH. Then (z,y) € P(X),
(y,2') € P(X) for some y and we may assume that (z,y) and (y,s’) are almost

periodic. Let {m,no) € P(M )’c and (n,n') € P(M) be almost periodic with
w(m,ng) = (z,y) and n(n,n’) = (y,z’). We may also suppose that (n,np) is

almost periodic, so ng = «(n) for some a € G. Since w(n) = w(ng) we have

na = w. Then (ng,a(n’)) = (a(n),a(n’)) € P(M), so (m,a(n’)) € —15(—]\([—)k+1
with #(m, a(n')) = (z,’).

Suppose now that (z,z') € mk. If » is a minimal idempotent, (zu,z'u)
is almost periodic, so (zu,z'u) = m(m,m’) where (m,m') is an almost periodic
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point of P(M)". Thus (m,m') € Ba(M), so (zu,z'u) € 7(Pa(M)) = Po(X).
Therefore (z,z') € C(Pp(X)) = Pry1(X). [ |

THEOREM 4.7: Let (X,T) be a minimal flow. Then S4(X) = P,(X), where
v < w. Thus the distal order §(X,T) of any minimal flow is < w.

Proof: By Theorem 4.6 for every positive integer k, P c Piy1 50 E(P) C
Uks1 Pr and Sa(X) = C(E(P)) € CUgz1 Pr) = Po [

§5. More about the relations Py

THEOREM 5.1: Let m: X — Y be a homomorphism of minimal flows. Let v be
a positive integer or w. Then (P, (X)) = P,(Y).

Proof: Tt is well known (see also Lemma 2.2) that n(P(X)) = P(Y), and
therefore 7(P(X)) = P(Y). The result for positive integers now follows by
induction, using Lemma 2.2. Induction also shows that 7(P,)(X) C P,(Y).
If (4,9') € Uicy Bi(Y)), then (y,y') = lim(y;,y}) where (yi,9}) € Py (Y) =
7P, (X). We may suppose (z;,z}) = (z,2') € P,(X). Then (y,y") = n(z,2') €
n(P,(X)). An application of Lemma 2.2 finishes the proof. |

Let (X,T) be a minimal flow with G(X) = A. Let m: M — X be a homomor-
phism.

LEMMA 5.2: Let g € G. Then n(gr(g)) C Py(X) if and only if g € AD,.

Proof: 1f g = od with a € A and § € D,, then, if m € M, n(m,g(m)) =
m(m, ad(m)) = n(m,d(m)) € n(Py(M)) = P,(X). Suppose n(gr(g)) € Py(X).
Then m(m, g(m)) = n(mg, 8(mp)) where 6 € D,. We may suppose mu = m and
mou = mg. Then my = a(m) and §(mp) = ag(m), where a,a € A. Tt follows
that g = a~'da € AD,. ]

THEOREM 5.3: Let £k > 1 be a positive integer. Then the following are
equivalent:

(i) Sa(X) = Pu(X); ie., 6(X) < k

(ii) D cC ADy_,.

(i) ADg_1 is a group.

(iv) AD = ADy_;.

(v) Py(X) is an equivalence relation.
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(vi) Pg(X) is closed.

Proof: Suppose D C ADy_1, and let (z,y) € Sg(X). Then, if u is a minimal
idempotent, (zu,yu) is an almost periodic point in Sg(X). Let (m,n) be an al-
most periodic point in Sg{M) with 7(m,n) = (zu, yu). Then n = §(m) where § €
D, so dad’ with o € A and &’ € Dy_y. Then (zu, yu) = n(m,n) = n(m,d(m)) =
m(m,ad’ (m)) = m(m, 8§ (m)) € n(gr(d’)) € m(Pr—1(M)) = Px_1(X). Therefore
(z,y) € C(Peor (X)) = Pu(X).

Suppose S4(X) = Pr(X), and let 6 € D. Let m € M with mu = m. Then
(m,d(m)) € S4(X), so (z,y) = w(m,d(m)) is an almost periodic point of S4(X) =

Py(X), so (z,y) € Py_1(X). Then n(gr(d)) € Py—1(X) and, by Lemma 5.2,
b€ ADy_1.

Hence (i) and (ii) are equivalent. Obviously (i) = (v) and (vi), and (since
Dy C Dy C ADy, C AD, which is a group) the equivalence of (ii), (iii), and (iv)
follows easily.

If Pi(X) is closed, then it is a closed capturing set containing A, so Py(X) =
Sq4(X), and therefore (vi) == (i).

Finally, we show that (v) = (ii). Suppose P(X) is an equivalence relation.
Suppose a; € ADj_1, i =1,2; i.e. (Lemma 5.2) 7(gr(e;)) C Pe_1(X) C Pe(X).
Thus we can find m € M such that 7(m, a1(m)) and 7(a1(m), aza;(m)) are in
Pi(X). By our assumption also 7(m, aga;(m)) € Py(X); Le., azay € ADg_;.
Now Lemma 4.4 implies D C ADy_;. 1

THEOREM 5.4: Let (X,T) and (Y,T) be minimal flows and let 7: X —Y be a
homomorphism. Then §(Y) < §(X). If the homomorphism = is proximal, and
d(Y) > 0, then §(Y) = 6(X).

Proof: Suppose 6(X) = ~. Then by Theorems 2.1 and 5.1, Sg(Y) = 7(Sa(X)) =
7(Py(X)) = Py(Y). Therefore §(Y) <y = §(X).

Now suppose « is proximal. If §(Y) = w, then it follows from the first part
of this proof that §(X) = w. Suppose §(Y) = k, a positive integer. We show
that 7~1(P,(Y)) = Px(X) and (using Theorem 2.1) this implies the equality of
the distal orders. It is known that 7~!(P(Y)) = P(X), so suppose k > 1. Let
n(z,2’') = (y,y') € Pe(Y). Let u be a minimal idempotent such that (yu,y'u) €
Py_1(Y). Then n(zu,z'u) = (y,y'). Let (g, z;) be an almost periodic point
in Py_1(X) such that =(zo,2}) = (y,7'). Since 7 is proximal, there is a unique

minimal set in 7~ (yu, y'u)T, so (zu,z'u) € (2o, 2H)T C Pr_1(X), and (z,2') €

C(R(X) = Po(X). N
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§6. A characterization of the equicontinuous structure relation for
minimal flows

Next, we characterize the equicontinuous structure relation for minimal flows in
terms of the capturing relation.

Let Eg = {a € G : gr(a) C Q} and let E = {a € G : gr(a) C Se(M)}.
Recall that D = {a € G : gr(a) C Sg(M)} is the group of the universal distal
minimal flow. It is easy to see that D and E are normal subgroups of G. Ej is
closed under inversion and conjugation by elements of G but in general is not a
subgroup of G.

LEMMA 6.1: E = EgD.

Proof: Let ¢ € E, and let m: M — My (where My = M/Ss(M), the universal
distal minimal flow). If m € M, (m,e(m)) € Seq(M), so nw(m, e(m)) € Seq(Ma).
Now  is an equivalence relation in distal minimal flows, so #(m, ¢(m)) € Q(My).
Let n € M such that (m,n) € Q(M) and w{m,n) = n(m, e(m)). We may assume
that {(m,n) is an almost periodic point, so there is an & € Ey such that n = h(m}.
Let & € G such that §(n) = e¢(m). Now w(6(n)) = w(e(m)) = w(n),so md =«
and therefore § € D. Also e(m) = §(h(m)), so € = 6h € DFEg = EgD. |

We remark that it can be shown that there is a subgroup G’ of G such that
E = G'D. However, we will not need this stronger result.

The following result, which relates the distal and equicontinuous structure
relations, was communicated to us by Bob Ellis.

THEOREM 6.2: Let (X,T) be a minimal flow. Then S.q(X) = Q(X)Sq(X).

Proof: It is sufficient to prove the result for X = M, the universal minimal flow.
The general case will follow from Theorem 2.1. Let (x,y) € Seq(M). Suppose
zu = z. Then (z,yu) is an almost periodic point of S.q(M), so y = e(z) where
¢ € E. By Lemma 6.1, ¢ = éa where § € D and o € Ey. Then (a(z),yu) €
S¢(M) and (z,a(z)) € Q, so (r,yu) € Q@S4(M). Now (y,yu) € P C S4(M) so
(,9) € QSa(M). W

Let (X,T) be a minimal flow, and let Q#(X) = Q# be the smallest closed
capturing set containing Q(X). Let m: M — X be a homomorphism, and let
K = {(a,b) € M x M : w(a, h(b)) € Q¥ for all h € Ey}.

LEMMA 6.3: K is a closed capturing set containing Sq(M).

Proof: Since Q¥ is closed and capturing, the same holds for K. If a € M and
h € Ey, then (a,h(a)) € Q(M) so m(a,h(a)) € Q(X) C Q¥, and (a,a) € K.
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Therefore A C K, and since K is closed and capturing, it follows from Theorem
3.3 that Sg(M) C K. |

THEOREM 6.4: Let (X,T) be a minimal flow. Then Q¥ = Se,.

Proof: Since Seq(X) is closed, capturing, and contains @, Q¥ C Se4(X). Let
(z,y) be an almost periodic point of Seq(X) and let (a,b) € Seq(M) be almost
periodic with m(a,b) = (z,y). Then b = e(a) where ¢ € E. Since E = EyD, we
have ¢ = hé with h € Ey and 6 € D. Now (a,d(a)) € S4(M) C K. By definition
of K, (z,y) = 7(a,b) = n(a,e(a)) = n(a, hé(a)) € Q¥*.

Therefore, all almost periodic points of Se,(X) are in Q*. Since Q¥ is
capturing, it follows that Se,(X) C Q*. |

COROLLARY 6.5: Let (X,T) be a minimal flow. Then the following are
equivalent:

(i) Q is an equivalence relation.

(i) C(@) = Q.

(iil) PQ = Q.

Proof: This follows from Lemma 1.2 and Theorem 6.4. |

§7. The equicontinuity order

For a flow (X, T) let Q1 = Q(X), @2 = C(Q,) and inductively, if v is an ordinal
number and Q; has been defined for i < v, define Q, = C(U,, Q@:). (Therefore
Qyi1= C(Q—v))

The equicontinuity order of (X,T) (denoted ¢ = ¢(X,T)) is defined to
be the least ordinal number v for which the equicontinuity structure relation
Seq(X) = Q4(X). (e(X,T) = 1if and only if Q(X, T) is an equivalence relation.)

For k a positive integer, let Ex = {@ € G : gr(a) C Qx(M)}. In particular
Ey = {a € G : gr(a) C Q(M)}. Note that the Ej are closed subsets of G.
Also, since 0{Qr(M)) = Qr{M) for 8 € G, it follows easily that Ej is preserved
under conjugation by elements of G. Let E = G(M/S,,), the Ellis group of the
universal equicontinuous minimal fiow; then we have E = E(as).

LEMMA 7.1: E = EyE,,.

Proof: Since clearly P, C Qy for every k < w, we have Dy C Eg, hence (by
Lemma 5.4) D C E,,. By Lemma 6.1, this implies E = EE,,. ]
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Question: Does E = E,?

Example 7.2: Let X = T = R/Z and o € R~ Q. Let a and b be the self-
homeomorphisms of X defined by

a{t)=t+a (mod 1); b(t):(t—%f%—%, 0<t<l,

and let T’ be the group generated by a and . McMahon introduced the flow
(X,T) as an example of a minimal and weakly mixing flow where the relation
Q(X) is not an equivalence relation ([M]). It is easy to see that in this flow,
P={(z,2'): |z —2'| < 1/4} and P = Q = {(2,2') : |z — '| < 1/4}. Moreover,
we have

Q2 =P = C(Q) = C(P) = {(z,&/) : |z - 2’| < 1/2},

whence C(Q) = {(z,2') : |z—2'| <1/2} = X x X = S¢q = S4. Thus McMahon’s
example has distal and equicontinuity order 3.

If, for an integer n > 2, we let

a(t)=t+a (modl); b(t)= (t— @)2+ {Z—t], 0<t <1,

we obtain a flow (X,T') with distal and equicontinuity order k, where k is the
least integer such that k/n > 1;ie., k=[n/2]+1 (ie, Quo1 & Qk = X x X).

In the next section we will have to construct more sophisticated examples in
order to get minimal cascades (i.e., Z-flows) with distal order exactly k, k& =
0,1,2,..., and k = w.

We conclude this section with the following observations.

Another approach to the equicontinuity order is to define it via the
“prolongation”. One defines for a subset A C X of a flow (X,T) its prolon-
gation as the set

II(A) = {z : 3 nets {x;} in X, {&;} in T such that z; —» z, z;t; - 2 € A}

The proof of the following lemma is immediate.

LeMMA 7.3: (1) If A is closed, then II{A) is closed.

(i) TI(A) = Q.

(iii) Let m: X — Y be a flow homomorphism, and let K C X. Then n(II(K)) C
(n(K)). If ¢ is an automorphism of (X, T), ¢(II(K)) = II(p(K)).

(iv) C(4) C II(A4).

Note that, for any flow, @ = II(A). Now set Q; = A, Q] = Q = IIQyp), and
for any ordinal v, ny =11 (UO‘QQ;’ (so QfH_l = H(Q;))
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It is easy to see that II(Seq) C Seq, 50 Q) C Seq- Also, it follows from (iv) of
Lemma 7.3 that Q, C Q. Therefore, there is an ordinal number v < ¢(X) for
which Q) = Seo(X). The alternative definition of the equicontinuity order is to
define it as ¢/(X), the smallest ordinal for which @, = Seq(X). This is the same
ordinal for which the Q) stabilize (Q’,,; = Q). Clearly €'(X) < ¢(X).

Corresponding to Theorem 4.7, we have:

THEOREM 7.4: Let (X,T) be a minimal flow. Then S¢q(X) = Q’, where vy < w.
Thus €(X) < w.

We omit the proof, which is a close paraphrase of the proof in section 4
of the result that the distal order is < w. One replaces the Dy with Fy =

{a € G:gr(a) C QL}-

§8., Examples
In this section we use the letter 7 to denote the generator of every Z flow.

ProPOSITION 8.1: For every positive integer k > 0, as well as for k = w, there
exists a minimal metric flow with distal order k.

Proof: Our examples are obtained via a slight modification of an example of
L. Shapiro, [S]. This is a minimal flow for which proximal is an equivalence
relation but is not closed.

We will briefly recall the construction in [S], keeping the same notations. Start
with the circle K = {k € C: |k| = 1} and an element A € K which is not a root of
unity. Thus the flow (K, 7), where 7k = Ak, is an irrational rotation. Next choose
an infinite sequence ky, ko, ... € K such that the orbits O(k;) = {A\"k; : n € Z}
are mutually disjoint. Let E = {J, O(k;) and assume further that 1 ¢ E. The
space X consists of the points {k* : k € K} where k* = k~ iff k ¢ E. The
map ¢: X — K is given by ¢(k*) = k. The topology on X is defined as follows.
We let the “intervals” [m—, k%] := ¢~ 1(m, k) U{m~, k*}, where (m, k) is an arc
on K traversed counterclockwise from m to k, form a subbase for the topology
on X. Clearly each subset [m~, k%] is both open and closed, so that X is a
zero-dimensional space. It is also easy to see that it is compact and that the map
¢ is continuous.

Define 7: X — X by 7(k*) = (Ak)*. We can easily check that 7 is a homeo-
morphism of X, so that (X,7) is a minimal flow, and that ¢: (X,7) — (K, 7)
becomes a flow homomorphism, in fact an almost 1-1 extension. Moreover, we
have

P(X,7)= AX,7)= {(z,2"): Ik € K {z,z'} = {k™,kT}},
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where A(X, 7) denotes the set of doubly asymptotic pairs in X x X, i.e., those
pairs (x, z') with
lim d(r"z,"z') =0,
jnj—o00

for some compatible metric d.

The next stage of the construction is to form a group extension ¥ = X x G of
X where (G is a compact abelian group. This is done by means of a “cocycle”,
i.e., a continuous f: X — G. Once [ is given the flow on Y is defined by

T(z,9) = (12,9f(x)).

The following auxiliary functions are then defined. First the cocycle f,(x) is
given by

| iy f(riz) forn >0,

]—[_1 f(r*z) formn <O,

i=n

i) ={
so that 7"(z, g) = (7"z, gfn(x)). For k € K set p;(k) = f(r'k*) f(7'k~)~; then

on(k) = {H?;ol pi(k)  forn>0,
" H;_zln pi(k)~! for n <0,

and §(k) = limj,|_ on(k), when it exists. We recall the following Lemma
(Lemmas 2 and 3 and Corollary 1 of [S]).

LEMMA 8.2:
(1) &(k) exists iff for each g € G there is a unique g1 € G such that (k¥,g) is

proximal to (k—, gg1). If {(k) exists, then &(k) = g1 and £(A™k) exists for
allm € Z.

(2) The proximal relation P(Y) is an equivalence relation iff £(k) exists for
every k € K. When it is an equivalence relation

P(Y)=AU{((k%,9),(k",9¢(k) : k€ K,g € G}
U{((k™,9),(kT,gé(k)™")): k€ K,g € G}.

(8) P(Y) is closed iff (k) exists for every k € K (i.e., P(Y) is an equivalence
relation) and lim, £(k,) = g for a sequence k, of distinct elements in K
implies g = e, the identity element of G.

We now take G = K and refer to [S] for the details of the construction of the
cocycle f: X — K. In fact, the only change needed is in the definition of the
sequence €,,. We let €; = exp(if;) for an arbitrary number 6, € (0, ], and then
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for m > 1 we let €,, = exp(i6;/m). We also assume, as we clearly may, that the
sequences {p(n, j): |j] < n} satisfy

min{|p(n, j) — p(n, k)| : 5}, k| < m, j # k} — oc.

We now have a family of flows (Yp,, 7) with parameter 0; € (0, #], the Shapiro
flows. As we will presently see they are all minimal flows.

We next show that the distal order of Shapiro’s flow (Ys,,7) is the least n for
which n6, > .

By definition we have Py = A and Py = C(P,;) = P(Y), the proximal relation
on Y. We prove our proposition by establishing by induction the following chain
of claims.

Cramv 1:
P = C(PO) =PuU {((k+,g),(k_,g§(k))) :keK,ge€ G}

U{((k™,9), (k*,g€(k)™") 1k € K,g € G}.
Proof: We recall that it is shown in [S] that in the Shapiro flows {(k) exists for
every k € K. Now use Lemma 8.2 (2). |

Cramm 1': Py = P,U{((z,9), (z,gexp(i0))) : z € X,g € G, 0 € [—01,61]}.

Proof: In the list of observations which lead to the conclusion that P(Y) is a
non-closed equivalence relation ([S], p. 524) we note (g) £(k,) = €1 for all n, and
(i) é&(k) =1 for k ¢ E. It is also easy to see that, for fixed n > 0, the set

{€(r*ka) : 16] < max{lp(n, j)|, 1j] < n}}

is equal to the set {¢J : |j| < n}. It follows that the range of £ is
{¢ : n = 1,2,...,|j] £ n}. Moreover, our assumption on the sequences
{p(n,7) : |j| < n} implies that £(7%(k,)) is constant for long sequences of in-
tegers. Hence if N is a positive integer, then for n sufficiently large each € is
equal to £(7%(k,)) for (at least) N consecutive integers £. Our claim now follows
from the identification of P(Y) in Claim 1 and the observation that for a minimal
cascade (X, 7) with X metric, given £ > 0 there is a positive integer IV such that,

for every z € X, the set {z,7(z),...,7V(2)} is € dense in X. |
CLAIM 2:
P, = C(Py)
=P

U{((k*,9), (k™ gexp(iB)&(k))) : k € K, g € G, € [0, 61]}
U{((k™,9), (k*, gexp(if)E(k) 1)) : k € K, g € G,0 € [0y, 6]}
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Proof: This follows from Proposition 1.1 (vi) and Claim 1. |
CLaM 2': Py = PU{((z,g), (z,gexp(i8))) : z € X, g € G,6 € [—261,264]}.

Proof: Same as that of Claim 1'. 1

In the same way we prove for every positive integer n > 1 two claims:

CLAIM n:

P,=C(P,_1)
=P,
U{((k*,9), (k~, gexp(i6)£(k))): k € K, g € G,6 € [~(n— 1)1, (n — 1)61]}
U{((k™,9), (k*, gexp(if)€(k)™1)): k € K, g € G,0 € [~(n — 1)81, (n — 1)61]}

and
CrLamM n': P, = P, U{((z,g), (x,gexp(if))) : z € X,g € G,6 € [-nb1,nb1]}.

It now follows that for every n > 1 with nf; < m, P,, properly contains P,_;
and we deduce that the Shapiro flow (Yy,,7) has distal order k, where k is the
least positive integer with k6, > m. This completes the proof for the case k > 1
an integer.

For k = w we take any sequence Y;, j = 1,2,..., of minimal flows where the
distal order of Y; is > j. Let Y, be any minimal joining of the countable family
Y;; then clearly the distal order of Yo is w. In fact it is easy to check that S3(Yoo)
is a subset of | J,, Pn(Yso)-

Finally, a minimal flow is distal iff it has distal order 0. The proof of Proposition
8.1 is now complete. [ |

COROLLARY 8.3: Shapiro’s flow (Y, 7) is minimal.

Proof: Let L C Y be a fixed minimal subset of Y. Denoting the action of k € K
onY by Ry: (z,k') — (z, k'k), we see that

Ko={k€ K:RLNL#0}={k€e K:RL=L}
is a closed subgroup of K and that Y = | J.c g RiL- It follows that the relation
S ={(y,v): y and 3’ are in the same minimal subset}

is a closed equivalence relation. It is now easy to see that P, = P(Y) C S
and then, by induction, that for every n also P, C S. Since we established



80 J. AUSLANDER AND E. GLASNER Isr. J. Math.

that for some n, P, = Sq(Y) = Ry, where m: ¥ — K is the homomorphism
n(z, k) = ¢(z) and
Re={(y,9) : n(y) = 7(y)},

it now follows that R, C S. In particular, Ky = K and Y = L is minimal. 1

Remark: As we have already observed, a minimal flow is distal if and only if
it has distal order k£ = 0. Since in a minimal flow the proximal relation has
the property that it is an equivalence relation when it is closed, it follows that
a minimal flow has distal order & = 1 iff its proximal relation is closed. Since
P =X x X =5, in a weakly mixing flow X with T abelian, the distal order of
such a flow is 2. It is not hard to see that the Morse flow also has distal order
k=2.
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